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Abstract

The rise of artificial intelligence has revolutionised numerous domains but has also introduced
significant challenges, particularly in the realm of document authenticity. With AI-generated
content becoming increasingly convincing, the trust paradigm around documents has shifted.
Today, a document is often presumed false unless its authenticity can be unequivocally estab-
lished. This new dynamic underscores the pressing need for robust mechanisms to verify and
maintain trust in digital documents.

One straightforward solution to this challenge is the use of a central authority to sign and
validate documents. While effective, this approach inherently relies on a trusted third party,
which may not always be desirable or feasible in decentralised settings. An alternative, more
decentralised approach is exemplified by systems like OpenPGP, where users employ personal sig-
nature keys to sign emails or other documents. However, such systems have a critical limitation:
they depend on the preservation of signatures. To authenticate older documents, the associated
signatures must remain intact and accessible for extended periods, necessitating reliance on a
trusted entity to store these signatures securely without risking erasure.

To address these limitations, blockchain technology offers a promising solution. By recording
signatures within a blockchain, reliance on a single trusted third party is mitigated. Instead,
trust is distributed across a decentralised network, making signatures resilient to tampering or
loss. However, blockchain-based systems are not without challenges.

A particularly complex issue arises when it is necessary to prove the authenticity of a specific
subset of data while maintaining the confidentiality of the remaining information. In such cases,
traditional blockchain-based signature schemes fall short, as they lack mechanisms to balance
data privacy with selective proof of authenticity. This scenario calls for more sophisticated
solutions that ensure both the confidentiality of sensitive data and the verifiable authenticity of
a chosen subset.

Our contribution We propose to address this challenge by introducing a new cryptographic,
blockchain-based protocol allowing at the same time confidentiality and selective proof of au-
thenticity. At the heart of our technical contribution to achieve these properties, is a novel
dedicated architecture, at the intersection of companies-oriented centralised model for usage
convenience and decentralised blockchain model to prevent centralised trusted authority. For a
better understanding of our solution, we elaborate more from different perspectives.

• Blockchain-based solution: The protocol we have designed is based on a blockchain in
which all transactions (e.g., digital signature of a signed contract, officially sent messages)
are anchored. The blockchain acts as a virtual centralised third-party storing information
without tampering them, a crucial feature to provide trust. Moving towards a decentralised
system, each user in a company manages its own key pair using a wallet, moving further
into a completely decentralised protocol.
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• Company operating model : In contrast with the decentralised blockchain serving all parties,
a company is interested in having the control of their private data, a crucial necessity when
these private data are used to derive information being stored in the blockchain, as we will
see later. For this reason, we have included in our protocol an additional multi-purpose
server, later called an operator. This operator is the cornerstone of a company within the
Carmentis protocol, since it acts as a trust party by signing data, as the party paying
fees to make the Carmentis blockchain network active, as a data encryptor and as a key
manager to allow stake holders of the company to access the entire data, or a subset of
these data. We elaborate more of this aspect below.

• Fine-grained data access: The protocol has been designed in opposition to the all-or-
nothing paradigm in which a user either has access to the entire data, or nothing. Instead,
when the user publishes (potentially private) data to the operator, following a predefined set
of access rules, the operator encrypts as many as the needed subset of the data accordingly
to the access rules, using a dedicated encryption key. This encryption is later shared with
users having the appropriate role with respect to the access rules.

• Privacy-preserving proof of authenticity : The major feature of our protocol is the ability
for a user to prove the authenticity of data. This feature is described in three distinct steps:
First, from the entire set of data, the prover generate an information called a commitment.
Second, the prover generates the proof of authenticity. Third and last, given the proof
and the commitment, the proof verifier accepts or rejects the proof. The generated proof
is said to be accepted with respect to the commitment on which both the prover and the
verified agreed on. This crucial condition is achieved practically in our protocol thanks to
the decentralised blockchain, storing the commitment without offering the possibility to
tamper it. The proof of authenticity can be used not only to prove the authenticity of a
data, but also a subset of them, without revealing any information on the data not in this
subset. This privacy-preserving proof only reveal the required data that should be proved
to be authentic and nothing more.

• Users anonymity : The protocol has been designed to preserve anonymity of users, meaning
that one cannot recover the identity of a user by observing (externally its interaction).

Outline In Chapter 1, we present an informal description of the Carmentis protocol, introduc-
ing the major concepts behind the protocol. In Chapter 2, we formally introduce the crypto-
graphic concepts used to construct the protocol.
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Chapter 1

Overview of Carmentis protocol

In this chapter, we present an overview of the key concepts serving as the building blocks for
the Carmentis protocol step-by-step, serving a formal, yet easy-to-understand, landing on the
protocol.

1.1 Basic cryptographic concepts

First, we recall some concepts being at the core of the protocol. For the moment, we introduce
these concepts separately, before to put all together in the following sections.

1.1.1 Secret-key encryption

The first concept we cover in this section is the secret-key encryption. Secret-key encryption,
also known as symmetric encryption, is a cryptographic technique where the same key k is
used for both encrypting and decrypting information. This method is widely used for secure
communication because of its simplicity and efficiency. The security property of an encryption
scheme defines how well the scheme protects the confidentiality and integrity of the data against
adversaries. In general, encryption security is evaluated by how difficult it is for an unauthorised
entity to decipher the plaintext or gain useful information without the key.

1.1.2 Digital signature

The second concept introduced in this section is digital signature, which is a cryptographic
mechanism used to ensure the authenticity, integrity, and non-repudiation of a digital message
or document. It is analogous to a handwritten signature or a stamped seal, but it is much more
secure due to its cryptographic basis. Unforgeability of a digital signature scheme ensures that
only the legitimate owner of the private signing key sk can create a valid digital signature for a
given message, making it computationally infeasible for anyone else to forge a signature, even with
access to the public verification key pk. Public verifiability allows anyone with the signer’s public
key to independently verify the authenticity of the signature, confirming that it was created by
the rightful private key holder and that the message was not altered. Non-repudiability ensures
that the signer cannot deny having signed the message, as the digital signature uniquely binds
the signer to the message, and only the private key they control could have produced it.
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1.1.3 Cryptographic hash function and Merkle-tree

The third and last concept introduces a key mechanism in our protocol, called cryptographic
hash function, being a mathematical algorithm that transforms an input, or ”message,” into a
fixed-size string of characters, which is typically a sequence of numbers and letters called the
“hash”. It is designed to be a one-way function, meaning it is computationally infeasible to
reverse the process and retrieve the original input from the hash value. Cryptographic hash
functions have several key properties: They produce a fixed-size output regardless of the input
size, are deterministic (the same input always produces the same hash), and exhibit strong
resistance to collisions, meaning it is computationally infeasible to find two different inputs a
and b that result in the same hash value, i.e., H(a) = H(b).

m1 m2 m3 m4 m5 m6 m7 m8

h12 h34 h56 h78

h14 h58

h18

Merkle root hash

Figure 1.1: Graphical representation of a Merkle-tree. The nodes are calculated as hi,i+1 =
H(mi∥mi+1) and hi,j = H(hi,m∥hm+1,j), where H is a cryptographic hash function.

A Merkle tree, depicted in Figure 1.1, is a data structure that uses cryptographic hash
functions to efficiently and securely verify the integrity of large sets of data. It organises data
into a hierarchical tree-like structure, where each leaf node represents a single data block, and
non-leaf nodes represent the hash of their respective child nodes. The root of the tree, called
the Merkle hash root, is a single hash value that summaries the integrity of the entire dataset.
Merkle trees are particularly useful in distributed systems, such as blockchain networks, where
they enable efficient verification without requiring access to the entire dataset. For instance, to
prove that a specific piece of data is included in the tree, one only needs the hashes along the
path from the data block to the root, significantly reducing the amount of information needed
for verification.

1.1.4 Key derivation function

A Key Derivation Function (KDF) is a cryptographic algorithm used to derive secure crypto-
graphic keys from a base input, such as a password or master key. A typical usage of KDFs are
to transform relatively low-entropy inputs into keys that are strong enough for use in encryption,
authentication, or other cryptographic operations. But there are also interesting to derive strong
key from high-entropy inputs, which is useful for instance to derive several keys from a single
one.

1.2 Blockchain and consensus

First of all, let recall what is a blockchain: A blockchain consists on a chain of blocks, where each
block is related with its predecessor by containing the hash of the previous block. The initial
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Figure 1.2: Example of network with three validators (in black) and three nodes (in white).

block, called the genesis block, can replace the hash of the previous block by some random r
instead. Below is depicted a really simplified example of a blockchain.

d0, h0 = r d1, h1 = H(b0) d2, h2 = H(b1) · · ·
Block b0 Block b1 Block b2

A critical aspect of a blockchain is the infeasability for an attacker to tamper even a single bit
without breaking the chain, thanks to the collision-resistance of the used (cryptographic) hash
function. This tampering resistance is particularly appreciated in a context where integrity of
some distributed data is crucial, as in the cryptocurrency setting and NFT. Indeed, the main
interest of a blockchain is to mitigate the recurrent need of trust on a centralised authority but
rather to distribute the trust on a large network of computers, with possibly malicious ones, to
agree on a the same data without some centralised authority. These computers maintaining the
blockchain are referred in this work as nodes. Note the “maintain” term, since when a block is
added in the blockchain, each node updates its copy of the blockchain by extending the chain of
blocks.

A block can contains any kind of information, generally referred as transaction. For example,
a block in a blockchain used to manage cash contains transactions to transfer an amount of
currency into another account. The consistency of the transaction with respect to the current
state of the blockchain is unavoidable. This verification can be performed in many ways via
a so-called consensus. In a setting where this validation is performed by a (possibly dynamic)
set of well-defined validators, as in our, the validation is performed by validator nodes, a node
having the charge to maintain the blockchain but also to verify the consistency of transactions
of a given block. In Figure 1.2 we have depicted an example of a network.

1.3 Virtual blockchains

In our protocol, a single blockchain is used to anchor all the data whose the integrity has to be
ensured, whatever the nature of these data and their origin. However, our protocol is designed to
address possibly unrelated businesses thanks to our agnostic approach. To enhance the readabil-
ity of the data being anchored in the blockchain, we have designed several new logical concepts,
structuring the block of the blockchain.

1.3.1 Definition of a virtual blockchain

The first notion we have introduced is the concept of virtual blockchain (VB). By analogy
with a virtual machine executed by a concrete machine, a virtual blockchain is maintained by
the blockchain. From the blockchain perspective, a blockchain maintains virtual blockchains
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by adding block, itself containing virtual block, or micro-block. In our protocol, seven types of
virtual blockchains are used in the protocol, listed in Table 1.1.

Virtual blockchain name Instances number Visibility Description

Organisation VB norg Public Section 1.3.2

Application VB napp Public Section 1.3.3

Oracle VB noracle Public Section 1.3.4

Account VB nacccount Public Section 1.3.5

Validator nodes VB nvalidator Public Section 1.3.6

Application-User VB napp · nuser Private Section 1.3.7

Application-Ledger VB nappInstance Private Section 1.3.8

Table 1.1: Listing of the virtual blockchains defined in our protocol.

As suggested in Table 1.1, a virtual blockchain can be instantiated many times if needed.
For example, a single virtual blockchain is dedicated to manage a single validator node. Hence,
if there are nvalidator validator nodes, then there are as much as virtual blockchains. The same
principle applies for all virtual blockchains.

Virtual blockchain visibility A virtual blockchain is said public if the data contained in the
virtual blockchain can be accessed publicly. At the opposite, a virtual blockchain is said private
if the data contained in the virtual blockchain can be accessed only by some parties. Note that
whatever the visibility, the blocks of a virtual blockchain are anchored in the blockchain.

1.3.2 Organisation virtual blockchain

An organisation, in the context of this protocol, refers to a company. To participate in the proto-
col, a company must first register. This registration process results in the creation of a dedicated
virtual blockchain. These virtual blockchains, which manage the operations of organisations, are
referred to as organisation virtual blockchains.

Note that each organisation is managed by its own virtual blockchain to support the update
of some fields of the organisation, such as the name or the country of the organisation. The same
principle applies for all virtual blockchains.

1.3.3 Application virtual blockchain

Once registered, a company can define an application. It is important to note that an application
in this context does not refer to a functional software application. Instead, it involves specifying
the structure of the data that the application will transmit to the blockchain. We refer to this
data structure specification as the application definition. These application definitions form a
fundamental component of interactions within the protocol. All such definitions are stored and
managed within a dedicated virtual blockchain, known as the application virtual blockchain.

10



1.3.4 Oracle virtual blockchain

An oracle in the context of the blockchain is a service or mechanism that provides external data to
a blockchain or smart contract. Since blockchains are inherently isolated from the external world
for security and integrity reasons, they cannot access external data directly. Oracles bridge this
gap by acting as intermediaries that fetch, verify, and deliver real-world data to the blockchain.

Similar to an application definition, an organisation can define one ore more oracle by spec-
ifying its input and output. This oracle definition does not include additional details beyond
this specification. The oracle definition is stored on a dedicated virtual blockchain known as the
oracle virtual blockchain.

1.3.5 Account virtual blockchain

An account in the context of the blockchain corresponds to wallet associated with some amount
of valuable tokens. As in the traditional banking system or in the context of Bitcoin, cash or
tokens can be transferred from an account to another. The major difference between these two
example in that in the centralised system, the bank is trusted whereas there is no trusted central
authority, rather a large set of nodes maintaining the blockchain.

In our protocol, each account is managed by a dedicated virtual blockchain. In more details,
the virtual blockchain starts by an initial declaration, including in particular the initial amount
of the tokens, the issuer of these accounts and the public key of the user managing the account.
Each time a transfer occurs, a new virtual block is added to the virtual blockchain.

1.3.6 Validator nodes virtual blockchain

Each validator in the network participating in the validation node has its own dedicated virtual
blockchain, called the validator node virtual blockchain. Similarly to previous virtual blockchain,
each validator has its own virtual blockchain to support the update of information related to the
validator node.

1.3.7 Application-user virtual blockchain

For each user interacting with an application is associated a virtual blockchain. In this virtual
blockchain is stored the data used by all the instances of the application definition. For instance, if
a user obtains a proof of identity from an oracle, this proof can be used among all the instances of
the application definition. For this reason, if there are nuser users and napp application definitions,
then we have at most nuser · napp application-user virtual blockchains.

1.3.8 Application-ledger virtual blockchain

An application-ledger virtual blockchain represents an instance of an application definition. Each
time an application definition is used by an user, a new virtual blockchain is created.

1.3.9 Description of the micro-block structure

All virtual blockchains described above are composed of micro-blocks. Whatever the virtual
blockchain the micro-block belongs, it has the same structure, depicted in Figure 1.3.
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Sub-section S1,1

Sub-section S1,n

...

Sub-section Sm,1

Sub-section Sm,n′

...
· · ·

Section S1 Section Sm

Header

Micro-Block

Figure 1.3: Graphical representation of micro-block structure.

Description of header The header of a micro-block always starts by the CMTS token indicating
the used format. It is followed by the protocol version, the height (i.e., the position of the micro-
block in the virtual blockchain), the hash of the previous block, the block creation timestamp,
the gas used to anchor the block and finally the gas price.

Definition of an internal and external scheme Before to detail the contain of a section
and subsection, we have to introduce the notion of scheme. A scheme refers in our protocol as a
data definition. For instance, an organisation definition is a scheme since it can be represented in
a structured manner (for instance using JSON object). On one hand, an internal scheme refers
to a scheme defined statically within the protocol. For example, the organisation structure do
not depend on the application. On other hand, an external application consists on a scheme
dynamically defined by the user, for instance when creating its application or oracle definition.
The application definition, or more precisely its data structure, is problem-specific and is called
external in this case.

Description of section A section contains the identifier of a scheme (the name of the scheme
defining the structure of the subsections), which can be either internal or external. It also
contains some information about the scheme. These two fields are public. Finally, it contains a
list of sub-sections whose the structure is introduced below.

Description of sub-section A sub-section is the heart of the micro-block structure. We
have three types of sub-section: public, private and provable, each having a dedicated structure,
depicted in Figure 1.4. The usage of each sub-section type is directly related on sensibility of
the data contained in the micro-block.

Public sub-section is the most simple sub-section, containing two fields being respectively
Type and Data. The Type field indicates the type of the sub-section, among public, private and
provable. In a public sub-section, Type is set as public. The Data field contains arbitrary data.

Private sub-section is intended to be used when the Data field contains sensitive data that
should be only accessible by some parties. To achieve the confidentiality of the Data field,
we rely on secret-key encryption. In addition to the fields Type and Data, a private sub-section
contains three additional fields AccessRules, KeyIndex and KeyType, but also a more structured
Data field. For clarity, we first focus on the last field Data. When an external observer sees a
private sub-section in the blockchain, the Data field corresponds to a ciphertext, encrypting a
structure containing two fields Plaintext and Padding. These fields are used during the sub-
section encryption, in which one encrypts the message Plaintext = m∥Padding where Padding
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Type

Data

Type

+ AccessRules

+ KeyIndex

+ KeyType

Data (encrypted):
• Plaintext

• Padding

Type

AccessRules

+ MerkleRootHash

KeyIndex

KeyType

Data (encrypted):
• Plaintext

• Padding

• + MerklePepper

Public sub-section Private sub-section Provable sub-section

SchemeId

SchemeInfo

SubSections:

Section

Figure 1.4: Graphical representation of the section and sub-section structures.

is used to hide the length of the message being encrypted1. While we will introduce the key
schedule later, we mention that the secret key used to encrypt the private subsection, denoted
ssk, is unique for each sub-section and derived from another secret. Note that the KeyIndex and
KeyType fields specify the used type of key. Before to explain the meaning of the AccessRules

field, we have to mention that the data provided by the user is encoded in a structured manner,
for instance using a JSON object. The user may want to make its data fully public, fully private,
or both. Indeed, the user may want to hide only a subset of properties contained in its JSON
data object while making all other properties public. The AccessRules field defines the data
properties affected by the type (public, private or provable) specified by the Type field in the sub-
section. Note that a property can only be referenced in a single sub-section. We have exemplified
the concept of access rules and visibility in Figure 1.5.

{
sender: "Alice",

receiver: "Bob",

message: "Hi !"

}

Type: Public
Data: ”Alice”, ”Bob”

Type: Private
AccessRules: fields.message
Data (encrypted): ”Hi !”

Public sub-section

Private sub-section

Data

field
s.se

nde
r, fi

elds
.rec

eive
r

fields.message

Figure 1.5: Splitting of data into sub-sections based on access rules.

Probable sub-section shares similarities with a private sub-section in the sense that both
of them are used to preserve confidentiality of the Data field. There are two additional fields
MerkleRootHash and MerklePepper. As its name suggests, the MerkleRootHash field contains
the root hash of the Merkle-tree (see Section 1.1.3). This root hash is used by a proof verifier
when verifying a proof of authenticity of (encrypted) data. The MerklePepper fields acts as a

1In contrast with other security properties being cryptographically secure, no security guarantee can be proved
for message length hiding [TV11].
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key to generate a proof, preventing anyone to generate a proof of authenticity. In other words,
only parties having access to this particular field can generate proof of authenticity.

1.3.10 Channels

As we have seen, the notion of section and sub-sections refers as a technical structure to organise
efficiently public, private and provable data in the blockchain. However, each of these structures,
and more particularly the private and provable ones, are involved in a more high-level notion
called channels. A channel can be understood as a sequence of related sub-sections within the
same virtual blockchain. When a channel contains private sub-sections, we said that a the channel
is private. In this case, secret encryption keys are used to encrypt all the data belonging to the
channel. In this section, we explain how a channel is organised but also how is performed the
key schedule (i.e., the process to generate the encryption keys).

c1,1,1,1 c1,2,1,1

c1,1,2,1

c2,2,1,1
Channel 1

Sub-section 1 Sub-section 1

Sub-section 2

Sub-section 1

Section 1

Section 2

Section 1

Micro-Block 1 Micro-Block 2

Channel 2

Figure 1.6: Graphical representation with two channels.

Organisation of a channel A channel corresponds to a related set of sub-sections. These
sub-sections can belong to the same section but can also be distributed over multiple sections.
In Figure 1.6, we have depicted two channels, whose the first channel contains three sub-sections
distributed over three sections among two micro-blocks. Recall that every private sub-section
contains encrypted data denoted ci,hst where i ∈ N is the channel index, h ∈ N is the height
of the micro-block where the sub-section is located, s ∈ N is the index of the section (chosen
incrementally) and t ∈ N is the index of the sub-section (chosen incrementally). From Figure 1.6,
it should be clear that a section may contain sub-sections from distinct channels and that a
channel may contain sub-sections distributed over sections and micro-blocks. Recall that a sub-
section containing a ciphertext ci,hst has been encrypted using a dedicated sub-section encryption
key sski,hst. This encryption key has been generated via a process commonly called a key schedule.

Key schedule inputs Before to dive into the key schedule, we have to introduce some variables
used as an input to the key schedule process. The first variable we need is the seed variable.
Each virtual blockchain starts with a genesis bloc, and as any genesis block, the hash of the
previous block do not exist, hence the hash of the previous block is replaced with a genesis
identifier genesisId computed as H(seed, ts) where seed is a randomly chosen element and ts is
the timestamp where the virtual blockchain is created. The seed variable is uniformly chosen for
each virtual blockchain and do not change over the lifetime of the virtual blockchain. The second
variable we need is a private key, denoted cck, owned by the channel initiator. The private key,
used as a crucial component in the key schedule, is kept secret by the channel initiator.
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Key schedule We are now ready to describe the key schedule process. For clarity, we will refer
in this section to the graphical example depicted in Figure 1.7, consisting on the key schedule
for two channels distributed over two micro-blocks.

HKDF HKDF HKDFck1 ck1 ck1HKDF

(genesisId, cck, channel 1) (h, s, t) (h, s, t) (h, s, t)

Enc Enc EncData1,111 Data1,121 Data1,211

c1,111 c1,211

c1,121

c2,212

ssk1,111 ssk1,121 ssk1,211

c1,111

c1,121

c1,211

Channel 1

Sub-section 1 Sub-section 1

Sub-section 2

Sub-section 1

Section 1

Section 2

Section 1

Micro-Block 1 Micro-Block 2

ck1

(1, 1, 1) (1, 2, 1) (2, 1, 1)

Enc

HKDFHKDF(genesisId, cck, channel 2)

(h, s, t)

Data2,212

Channel 2

ck2

ssk2,212

c2,212

(2, 1, 2)

Figure 1.7: Graphical representation of a key schedule with two channels. The triplet (h, s, t)
defines the index of the height of the micro-block, the index of the section and the index of the
sub-section, respectively. The notation xc,hst should be read as x is associated to channel c at
sub-section located at (h, s, t).

We start our description with the encryption key sski,hst used to encrypt the data within a
sub-section. This key is derived from four inputs: (1) the height of the micro-block in which the
sub-section is contained, (2) the index of the section inside the micro-block containing the sub-
section, (3) the index of the sub-section inside the section and (4) a channel key, denoted cki,hst.
More formally, the sub-section key derivation is computed as sski,hst ← HKDF(cki, h∥s∥t) where
HKDF is a (hash) key derivation function (see Section 1.1.4). Within a channel is associated
a channel key ck which do not change during the lifetime of the channel. For the sake of
example, observe that in Figure 1.7, the channel key ck1 of the first channel is used to derive all
the sub-section keys ssk1,hst, used to encrypt the data Data1,hst. Therefore, the confidentiality
of the encrypted data heavily holds under the confidentiality of ck. Similarly to sub-section
keys, a channel key is derived, again using a key derivation function, from three inputs: (1) A
public genesis identifier genesisId associated unique for each virtual blockchain, (2) a channel
index i, and (3) a secret key cck kept private by the channel initiator. Formally, we have
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cki ← HKDF(cck, genesisId∥i) with i the index of the channel.

Channels visibility and numbers Depending on the visibility of the contained sub-sections
(i.e., public, private or provable sub-sections), the channel becomes either public, private or
provable. In other words, a public channel cannot contain private or provable sub-sections,
a private channel cannot contain public or provable sub-sections and provable channel cannot
contain public or private sub-sections. Note that the number of channels within the same virtual
blockchain may depend on its visibility. By default, we have one channel for each type of channel
visibility: one being public, one private and another one provable. While there are always one
public channel, one may consider the case where there are asymmetry of information, handled
by the channel access rules.

Channel access rules When a virtual blockchain is created, the channel initiator defines
access rules for the data being anchored in the virtual blockchain. Suppose two private data
d1 and d2 that can be accessed by users having respectively roles r1 and r2. Then, the channel
initiator creates two distinct channels, one for each data. Hence, d1 is encrypted in the first
channel using a sub-section encryption key derived from ck1, whereas d2 is encrypted in the second
channel using a sub-section key derived from ck2. When a user want to access d1 in the first
channel, the channel initiator shares with the user, after completed some form of authentication,
the channel key ck1. For this reason, the number of private (but also provable) channels depends
on the number of combination of roles to access the data anchored in the channel. Let denote by
Data the set of variables (defined in the application definition). These access rules are formally
defined as L = (Roles,Chan,Sub,Perm) where Roles is a list of roles, Chan is a list of channels,
Sub is a list of couples (r, C) allowing a role r ∈ Roles to access a set of channels C ⊆ Chan.
The last element Perm corresponds to the list of couple (c,D) where c ∈ Chan is a channel and
D ⊆ Data is the variables visible in the channel c.

Roles (Roles) Channels (Chan) Data (Data)

sender

receiver

fileChannel

senderChannel

receiverChannel

file

sentAt

accessedAt

Subscriptions (Sub) Permissions (Perm)

Figure 1.8: Example of access rules.

We have exemplified the access rules as follows: Suppose that a user, referred here as the
sender, wants to sends a file to another user, called here the receiver. The sender wants to anchor
on a virtual blockchain the fact that he has sent the file at a given date. Similarly, the receiver
wants to anchor the fact that he has accessed the file at a given date. The sending and accessing
dates are denoted respectively sentAt and accessedAt. The constraint is that the sender should
not access the accessing date of the receiver. Conversely, the receiver cannot access the sending
date, but the file, denoted file, is visible by both. To respect these constraints, one for each
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variable, leading to three distinct channels. The first channel, containing the file and called
fileChannel, is accessed by both the sender and the receiver. The second channel senderChannel
can be accessed by the sender. The third channel receiverChannel can be accessed by the
receiver. We have depicted these elements in Figure 1.8.

We now formally instantiate the access rules L = (Roles,Chan,Sub,Perm) regarding on our
example. The set of roles is composed of two roles, hence Roles = {sender, receiver}. Since we
have three distinct channels, we have Chan = {fileChannel, senderChannel, receiverChannel}.
The subscription set Sub exhibiting the accessible channels for each role, and the permissions set
Perm exhibiting the data access permissions for each channel are defined as follows:

Sub = {sender : {fileChannel, senderChannel}, receiver : {fileChannel, receiverChannel}}

Perm = {fileChannel : {file}, senderChannel : {sentAt}, receiverChannel : {accessedAt}}

Channel initiator The holder of the private key cck used to generate a channel, hold by the
channel initiator, is at the core of the confidentiality of the data being anchored on the virtual
blockchain. It is now interesting to study who is the party holding the private key. To answer this
question, we will now study the architecture of the protocol putting in practice all the notions
we have introduced so far.

1.4 Parties description

As any cryptographic protocol, multiple parties are involved in the protocol. For the moment,
we have cover all notions related to the blockchain including virtual blockchains and channels.
All of these notions are orchestrated by several parties that we now describe.

Operator OBack B

Node N

Oracle OrOperator O

Node NValidator V

Front F Wallet W Wallet W

Node N

Organisation 1 Organisation 2

User 1 User 2

Figure 1.9: Graphical description of the parties. A directed edge between A and B means that
A communicates with B. The dashed edge means a communication channel using QR code.

1.4.1 Description of the parties

The protocol contains seven distinct parties, depicted in Figure 1.9. Two of them are already
known, namely nodes and validators, called respectively N and V, in charge of maintaining the
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blockchain (anchoring the virtual blockchains). Other parties are users of the blockchain. These
remaining parties are grouped into two groups, namely organisational parties and user parties.
In the first group are included three servers, called the back, the operator and the oracle, denoted
respectively B, O and Or. The group of users includes two parties, namely the front and the
wallet, denoted F and W respectively.

Description of back and front We start our description by introducing the back and the
front, serving the same purpose being to provide service to the user, taking the form of a web
server. The back server provides web content to the user’s browser referenced here as the front.
It is for this reason that the back and the front are connected in Figure 1.9.

Description of the oracle The oracle in the protocol is aligned with the standard oracle
definition in the blockchain terminology: An oracle is a party signing an information with its
signature key. An oracle is particularly interesting when a user want to attest the ownership of
an email address or more.

Description of the operator The operator consists on a server running on the organisation
side. It is in charge of validate data before to be anchored in the virtual blockchain and ultimately
in the sub-sections. The operator confirms the acceptability of the data by signing them, meaning
that the operator holds the private key of a signature key pair. It is also in charge of creating
channels within a virtual blockchain. Hence, the operator creates and holds a channel creation
key cck, meaning that the operator is a channel initiator.

Description of the wallet The last type of parties in our protocol is the wallet. A wallet
puts forward an interesting form of decentralisation in which an end-user manages and protects
its own private key of a signature key pair. Essentially, the wallet is used by the user to approve
data, later being anchored in the (virtual) blockchain. In the protocol, the wallet is limited to
interact with three parties, depicted in Figure 1.9: The front by scanning QR code, and the
operator and nodes by sending regular requests.

Generation of 12 words

w1, . . . , w12

Seed seed Enc

Password passw

Storage

PBKDF PBKDF

Figure 1.10: Description of the wallet setup.

1.4.2 Setup of the wallet

When a user creates a wallet, the user follows a procedure whose the general process is described
in Figure 1.10. The wallet generates 12 words constituting a so-called passphrase from a wallet
seed, denoted seed is derived. These derivations are done using a password-based key derivation
(PBKDF). This seed is encrypted using a secret-key encryption scheme whose the secret key is
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derived, again using a password-based key derivation function, whose the input is a password
passw chosen by the user during the registration. From the seed is derived signature key pairs,
depending on the need.

1.5 Protocols description

In this section, we introduce a general overview of the protocols developed on the introduced
architecture.

1.5.1 Description of the public-key-based authentication protocol

The first protocol we introduce allows a user owning a given wallet, to authenticity to a service
(managed by a back server) using its public key whose the private signature key is owned by the
wallet.

The protocol starts with the user initiating its wallet. For clarity, we assume that the user
owning the wallet has the wallet seed seed, from which every signature key pairs of the user are
derived. The first step for the protocol is generation of a signature key pair (sk, pk) by the front
F . This public key pk is ultimately signed by the wallet, approving the front to perform action
in the name of the wallet such as authenticating to a service. The public key pk is shared by the
front with the wallet using the QR code. In this setting, the public key of the wallet should be
known by the front F and the back B.

1.5.2 Description of the oracle-based authentication protocol

The second protocol we introduce allows again the user to authenticate to a server managed
by the back server. This time, the authentication is based on some information attested by an
oracle, for instance using an email address.

The protocol shares similarities with the public-key-based authentication protocol. In this
scenario, we assume that the wallet has some authentication material I as well as a signature σI .
The protocol establishes a secure connection between the front F and the wallet B owning the
signature σI . The secure connection is established via the operator O acting as the intermediate.
When the front receives the signature from the wallet, the front verifies the authentication
material I with respect to the signature σI and the public verification key of the oracle.

1.5.3 Description of the event approval protocol

The event protocol is initiated with the front F and the walletW establishing a secure connection
through the operator O, via an ephemeral Diffie-Hellman, from which an encryption key is
derived. This encryption key is used to encrypt data form the front to the wallet. Once received,
the wallet approves the data by signing them using an ephemeral signature key derived from the
seed and some other application-related information.
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Chapter 2

Cryptographic background

2.1 Notations

We introduce the most common notations used in this work. More specific notations are intro-
duced when required.

• By a← A(), we denote the affectation of the output of the algorithm A to the variable a.
• By a←$ S, we denote the random sampling from the set S, affected to the variable a.
• By λ, we denote the security parameter.
• By [x1, . . . , xn], we denote the list containing, in order, the elements x1, . . . , xn.
• Given integers x and y such that x ≤ y, by [x, y], we denote the list [x, x + 1, . . . , y]. By
[x] we denote the list [1, . . . , x].

• An algorithm is written as Alg(·), whereas a protocol between parties A1, . . . ,An is written
as Proto⟨A1(·), . . . ,An(·)⟩ → A1(·), . . . ,An(·). Parties which do not receive an output from
the protocol are sometimes omitted.

• By [xi]i∈[n] we denote the list [x1, . . . , xn].
• By X p= Y , we express the perfect indistinguishability between the two distributions X
and Y . Similarly, the notation X

s≈ Y expresses the statistical indistinguishability between
the two distributions X and Y .

Protocol notation In this work, we use the Alice & Bob notation [BN05] whose we recall the
major components:

• By A→B: m, we mean that A sends the message m to B. When B does some computation
after received m, we list these computations right below.

• By A knows m, we mean that A knows the message m.

• By A generates m, we mean that A generates the message m, possibly from previously
exchanged messages.

2.2 Requirements

As any cryptographic protocols, the security of our construction relies on existing cryptographic
assumptions and primitives recalled below.

20



ExpIND-CPA
A,Π (λ)

1 : k ← Π.KGen(1λ)

2 : (m0, h0), (m1, h1)← AEnc(k,·,·)(λ)

3 : b←$ {0, 1}
4 : c← Π.Enc(k,mb, hb)

5 : b′ ← A(c)
6 : return b = b′

ExpINT-CTXT
A,Π (λ)

1 : k ← Π.KGen(1λ)

2 : (c∗, h∗)← AEnc(k,·,·)(λ)

3 : m∗ ← Dec(k, c∗)

4 : return m∗ ̸= ⊥ ∧ (c∗, h∗) /∈ Enc(k, ·, ·)

Figure 2.1: Experiments for IND-CPA-security and for INT-CTXT-security for an authenticated
encryption with associated data.

Authenticated Encryption with Associated Data (AEAD) Encryption enables secure
transmission of messages over untrusted communication channels by ensuring the confidential-
ity of the transmitted information. In the literature, two primary encryption paradigms are
identified. The first is secret-key encryption, where both encryption and decryption rely on the
same shared secret key. This approach is highly efficient, making it well-suited for encrypting
large volumes of data. Let focus on secret-key encryption, and more particularly authenticated
encryption with associated data, denoted AEAD. We recall the formal definition of an AEAD
scheme from [Rog02]: An AEAD scheme is defined by the tuple Π = (KGen,Enc,Dec) over the
key space K, the nonce space N, the header space H, the message space M and the ciphertext
space C as follows:

• KGen(1λ)→ k: Given the security parameter λ, outputs a secret-key k ∈ K.

• Enc(k, n,m, h) → c: Given the secret-key k ∈ K, a nonce n ∈ N, a message m ∈ M and
some (public) header h ∈ H, outputs a ciphertext c ∈ C. For clarity, when the context
make it clear, we voluntary omit the nonce by writing Enc(k,m, h) = Enc(k, n,m, h) for a
randomly generated nonce n. Note that n might be included in c without loss of security.

• Dec(k, c, h) → m or ⊥: Given the secret-key k ∈ K, a ciphertext c ∈ C and an header
h ∈ H, outputs either m ∈M if the couple (c, h) has been encrypted

The expectation from a security standpoint for an (authenticated) encryption scheme, in-
tuitively, says that for any polynomial-time adversary, it preserves the confidentiality of the
encrypted message. In other words, no one can distinguish between the encryption of a message,
say m0, from another message, say m1, even if m0 and m1 are chosen by the adversary. More
than choosing the challenge messages, we have to assume that the adversary has the ability to
obtain the encryption of any message of his choice, before and after obtaining the challenge
ciphertext. Under the prism of the secret-key encryption, an encryption oracle perfectly models
the ability for an attacker to send a request to a running server accepting some message and
returning its encryption. The formal definition of this experiment is called Indistinguishabil-
ity under Chosen-Plaintext Attack (IND-CPA) that we have depicted in Figure 2.1. Note that
compared to the initial nonce-based encryption definition of Rogaway [Rog04], we prevent the
adversary to provide the used nonce since the usage of the same nonce may lead to critical flaws.
For this reason, the used nonce is randomly chosen by the challenger during the experiment.
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Definition 1 (Indistinguishability under Chosen-Plaintext Attack, IND-CPA) Let Π =
(KGen,Enc,Dec) be an authenticated encryption scheme. Then, Π is said IND-CPA-secure if for
every adversary A, we have:

AdvIND-CPA
A,Π = 2 ·

∣∣∣∣Pr [ExpIND-CPA
A,Π (1λ)→ 1

]
− 1

2

∣∣∣∣ ≤ negl(λ)

As shown in the work of Bellare [BN08], an authenticated encryption (with associated data)
implies at the same time IND-CPA security explained above, and Integrity of Ciphertext security,
denoted in short as INT-CTXT security. Intuitively, this property ensures that an adversary
should not be able to produce a ciphertext c∗ associated to some header h∗ not produced by the
encryption oracle. This property is formalised in Figure 2.1.

Definition 2 (Integrity of Ciphertext, INT-CTXT) Let Π = (KGen,Enc,Dec) be an au-
thenticated encryption scheme. Then, Π is said INT-CTXT-secure if for every adversary A,
we have:

AdvINT-CTXT
A,Π = Pr

[
ExpIND-CPA

A,Π (1λ)→ 1
]
≤ negl(λ)

Signature Digital signature is a useful cryptographic primitive allowing a user to authenticate
messages. In a signature, the signer of a message holds a secret signature key sk used to compute
a signature of a given message m, denoted σm along this manuscript. The public verification
key pk, as its name suggests, is public and used to authenticate the message via the signature
σm. Since the verification of the signature relies on the public key, the verification procedure is
public. Moreover, in case where the public key is certified to be associated to a specific user,
say U , then the signature σm proves that U authenticates m. Formally, a signature scheme is
defined by the tuple Sig = (KGen,Sign,Vf) defined over the key space K×P, the message space
M and the signature space S:

• KGen(1λ)→ (sk, vk): Given the security parameter 1λ, outputs the secret signature key sk
and the public verification key vk.

• Sign(sk,m)→ σ: Given the secret signature key sk and a message m, outputs a signature
σ.

• Vf(vk,m, σ)→ b: Given the public verification key vk, the message m and the signature σ,
outputs 1 if the signature authenticates m.

The security of a digital signature scheme relies on the hardness for an adversary to pro-
duce a signature authenticating a message m′, not signed by the user having the secret key
sk. This security is formally known as Existential-Unforgeability under Chosen-Message Attack
(EUF-CMA) security and is defined in the Figure2.2.

Definition 3 (Existential-Unforgeability under Chosen-Message Attack, EUF-CMA)
Let Π be a digital signature scheme. Then, Π is said EUF-CMA-secure if for every adversary A
we have:

AdvEUF-CMA
A,Π = Pr

[
ExpEUF-CMA

A,Π (λ)→ 1
]
≤ negl(λ)
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ExpEUF-CMA
A,Π (λ)

1 : (sk, pk)← Π.KGen(λ)

2 : M← ∅

3 : (m∗, σ∗)← AOSign(M,sk,·)(λ)

4 : return m∗ /∈M∧Π.Vf(pk,m∗, σ∗) = ⊤

Oracle OSign(M, sk,m)

1 : σm ← Π.Sign(sk,m)

2 : add m inM
3 : return σm

Figure 2.2: Security experiment for the EUF-CMA property.

Key Encapsulation Mechanism When two parties want to agree on a shared secret key,
the most common and natural approach is to rely on the so-called Diffie-Hellman scheme. This
scheme belongs to the line of research studying Key Encapsulation Mechanism (KEM). In a
nutshell, a KEM scheme allows a party to generate a key pair containing a private key sk and
a public key pk. Given the public key pk, one can derive two elements: A shared key k and a
ciphertext c. We said that c “encapsulates” the shared key k. The party owning the key pair can
efficiently agree on k by “decapsulates” the ciphertext c its private key sk, leading to k. Based
on the work of Brendel et al. [BFG+19], we provide the formal definition of an unauthenticated
KEM denoted Π = (KGen,Encaps,Decaps) defined below:

• KGen(1λ)→ (sk, pk): Given the unary representation of the security parameter λ, the key
generation algorithm outputs a private key sk and a public key pk.

• Encaps(pk)→ (k, c): Given the public key pk, the key encapsulation

• Decaps(sk, c)→ k: Given the private key sk and the ciphertext c, the decapsulation function
outputs the secret key k.

The security notion associated to a KEM corresponds to the infeasability for any adversary
to distinguish between a secret key k obtained via the execution of the KEM scheme and a
secret key k randomly chosen from K. This security notion is formalised in the work of Bren-
del et al. [BFG+19] and recalled in Figure 2.3.

ExpIND-CPA
A,Π (λ)

1 : (sk, pk)← Π.KGen(λ)

2 : (k0, c)← Π.Encaps(pk)

3 : k1 ←$ K

4 : b←$ {0, 1}
5 : b∗ ← A(pk, c, kb)
6 : return b = b∗

Figure 2.3: Security experiment for the IND-CPA property of KEM.

Definition 4 (Indistinguishability under Chosen-Plaintext Attack, IND-CPA) Let Π =
(KGen,Enc,Dec) be a KEM scheme. Then, Π is said IND-CPA-secure if for every adversary A,
we have:

AdvIND-CPA
A,Π = 2 ·

∣∣∣∣Pr [ExpIND-CPA
A,Π (1λ)→ 1

]
− 1

2

∣∣∣∣ ≤ negl(λ)
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In the pre-quantum world, the most widely used KEM scheme is constructed based on the
so-called Diffie-Hellman key exchange whose the security is based on the Diffie-Hellman assump-
tion. The Diffie-Hellman assumption, or more commonly the Decisional Diffie-Hellman (DDH)
assumption, refers on the hardness for any polynomial-time adversary to distinguish between
the two distributions (ga, gb, gab) and (ga, gb, gz) for a, b, z ←$ Zq, where g is the generator of
the prime-order subgroup G. In this work, we rely on the secp256k1 curve for which the DDH
assumption is assumed to be computationally hard against classical adversaries. The parameters
of secp256k1 are recalled in Table 2.1.

p for Fp 2256 − 232 − 977

Equation y2 = x3 + 0x+ 7 (a = 0, b = 7)

Order q 2256 − 432420386565659656852420866394968145599

Cofactor h 1

Table 2.1: Parameters of the secp256k1 curve.

As suggested by Brendel et al. [BFG+19], an ephemeral Diffie-Hellman suits well within the
KEM formalism.

• KGen(1λ)→ (sk, pk): Generates a random a←$ Zq and outputs sk← a and pk← ga.

• Encaps(pk)→ (k, c): Generates a random b←$ Zq and outputs k ← gab and c← gb.

• Decaps(sk, c)→ k: Outputs k ← gba.

A major advantage of using the KEM notation instead of the DDH assumption is the ability
to move from pre-quantum KEM to post-quantum ones without breaking the security of our
scheme.

Cryptographic hash function In this work, we rely on cryptographic hash function. An
hash function, modelled as H : {0, 1}∗ → {0, 1}λ, takes as an input an arbitrary-sized string and
outputs a λ-sized bitstring. The main interest of hash function is to obtain a short fingerprint,
called a hash, of a possibly large data. This is particularly useful to check the integrity of a large
data by comparing a short fingerprint. Indeed, the modification of a single bit should result into
a completely different hash.

The critical security property of a cryptographic hash function is to provide collision-resistance,
meaning that it should be infeasible to find two distinct messages m and m′ such that H(m) =
H(m′). By definition, such a couple of messages exists, but should be hard to obtain.

Another approach to model cryptographic hash function is to rely on the so-called Random
Oracle Model (ROM). Introduced in [BR93], this model is an idealisation of the hash function,
taking the form of an oracle, working as follows: This publicly-available oracle accepts any
request containing a message m. If it is the first time that m has been seen, the oracle randomly
chooses a value h from {0, 1}λ, and internally stores the couple (m,h) and returns h. In case
where m has already been received during a previous request, then the oracle retrieves the couple
(m,h) from its internal storage and returns h. A direct remark is that given h← ROM(m), we
have the guarantee that m cannot be learned, since h has been sampled at random from {0, 1}λ.
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Password-Based Key Derivation Function Key Derivation Function (KDF) are partic-
ularly useful for obtaining pseudo-random bitstrings, used later as input keys for other crypto-
graphic primitives, from a source key material. When, the source key material is considered to
have a poor entropy such as passwords, it is interesting to rely on Password-Based Key Deriva-
tion Function (PBKDF). In a nutshell, this function is used to transpose a password with limited
entropy to an l-sized pseudo-random bistrings.

We recall the formal definition from the work of Yao and Yin [YY05]. Formally, a PBKDF
scheme is defined over the password space as K, the salt space as S, the number of iterations
space N and the derived key length space N. A PBKDF scheme is also defined via a family
of hash functions {Hk}k from which we sample H. A PBKDF scheme is usually defined as
PBKDFH(c, p, s, l)→ k where:

• c ∈ N is the desired number of iterations.
• p ∈ P is the password.
• s ∈ S is the salt.
• l ∈ N is the length of the desired length of the derived key.
• k ∈ {0, 1}λ is the derived key.
In our work, the pseudo-random function H is instantiated using SHA-256 and the number

of iterations is fixed at 50000. The security of a password-based key derivation function is
defined via a security experiment from [YY05, Definition 2], called Strongly Secure (PB)KDF
and denoted SSPBKDF. Note that we adapted the security game using oracle instead of an
iteration, and we have explicitly provided the output y. The provided security definition ensures
that even given access to the pseudo-random function H, the salt s, the iteration number c, there
is no polynomial-time adversary able to distinguish between y ← FH(p, s, c) and y ←$ {0, 1}l.

ExpSSPBKDF
A,F,H,b (λ)

1 : p←$ P, s←$ S, c←$ N
2 : If b = 0 then y ← FH(p, s, c) else y ←$ {0, 1}c

3 : b∗ ← AH(·),OFH (p,(s,c),·)(y, s, c)

Oracle OF(p, (s, c), (s′, c′))

1 : If (s, c) = (s′, c′) then abort

2 : return FH(p, s′, c′)

Figure 2.4: Strong Secure KDF definition for a password-based key derivation function F [YY05].

Definition 5 (Strong Secure KDF, SSPBKDF) Let F be a password-based key derivation
function. Then, F is said SSPBKDF-secure if for every adversary A we have:

AdvSSPBKDF
A,F,H =

∣∣∣Pr [ExpSSPBKDF
A,F,H,0 (λ)→ 1

]
− Pr

[
ExpSSPBKDF

A,F,H,1 (λ)→ 1
]∣∣∣ ≤ negl(λ)

Hash Key Derivation Function When dealing with a password, having a low entropy by
definition, the probability to recover the password, compared to other cryptographic primitives,
is not negligible. For instance, there are 240 possible passwords of 10 hexa-decimals characters
(1610 = 24∗10 = 240) which provides only 40 bits of security against brute-force attack, which is
considered weak. To face this security, password-based key derivation function relies not only on
the probability to guess the password but also the execution time required to compute the derived
key y from a password p. Indeed, the advantage of an adversary is obtained from a probability
ϵ to win the experiment, but also its execution time denoted t. Its advantage is computed as
e/t. Going back to our example, a password-based key derivation function can virtually obtain
a more bits of security by increasing the execution time require to obtain y. For instance, if 210
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is required to derive y from p (knowing the salt and the iteration number), then the advantage
to recover p by brute-force is 2−40/210 = 2−50, leading to 50 bits of security.

At the opposite, Hash Key Derivation Function (HKDF) considers inputs having high entropy.
For this reason, an HKDF function does not have to artificially increase its execution time to
obtain a better security and hence can enjoy a more direct and efficient approach.

Merkle-tree A Merkle-tree is intensively used in cryptography to prove the authenticity of
a value vi being part of a larger set of data v1, . . . , vn, using a concise proof, say π, of size
O(log(n)). To obtain statistical privacy of the unrevealed data, Ben-Sasson et al. [BSCS16]
relies on a privacy-friendly Merkle-tree, consisting on the addition of n randoms r = r1, . . . , rn,
where each random ri is collapsed to the value vi before to compute the leafs. Following the
definition of Ben-Sasson et al. [BSCS16], we formally define a Merkle-tree by three algorithms
MT = (GetRoot,GetPath,CheckPath) defined as follows:

• GetRoot(v, r)→ rt : Given a l-sized list of values v = v1, . . . , vl, outputs a root hash rt .

• GetPath(v, i, r) → ap : Given a l-sized list of values v = v1, . . . , vn and an index i ≤ l,
outputs an authentication path ap.

• CheckPath(rt, i, vi, ri, ap) → b: Given the root hash rt, an index i, the associated value vi
and the authentication path ap, outputs 1 if ap is a valid path for vi with respect to the
hash root rt .

The soudness of the Merkle-tree corresponds to the infeasability for any PPTadversary to
produce an accepted authentication path for a different set of data v′ and/or random r′.

ExpSOUND
A,Π (λ)

1 : (v1, . . . , vn), (r1, . . . , rn)← A(λ)
2 : rt← Π.GetRoot(v, r)

3 : {(v′j , r′j , apj)|j ∈ [n]} ← A(rt)
4 : return ∃j ∈ [n], (vj∥rj) ̸= (v′j∥r′j) ∧ CheckPath(rt, j, v′j , r

′
j , apj)→ 1

Figure 2.5: Security experiment for the soudness property of Merkle-tree.
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Chapter 3

Protocol description

3.1 Notation

By Esig we denote the EUF-CMA-secure signature scheme and by Eae we denote the IND-CPA-
secure and INT-CTXT-secure authenticated encryption scheme [BN08]. By Ekem, we denote the
IND-CPA-secure key exchange mechanism (KEM).

3.2 Wallet creation

To install the wallet, the user is expected to provide a password denoted passw. From this
password is derived a secret-key derived as kpassw ← PBKDF(passw, 0, 256). This secret-key is
used to encrypt the wallet. During the wallet installation, the wallet provides twelve words
passp = w1, . . . , w12 to the user. From these words, a seed seed ← PBKDF(passp) is derived.
The seed (constituting the wallet) is never stored in clear, rather is encrypted as cseed ←
Eae.Enc(kpassw, seed).

Key Known by Used for Lifetime

Knowledge

passw Wallet Secure wallet storage Forget when wallet closed.
passp Wallet Wallet recovery Forget when wallet closed.

Private keys

f Front Create secure channel Forget when wallet handshake done.
w Wallet Create secure channel Forget when wallet handshake done.
ksess Front, Wallet Secure channel Single execution of the protocol.
kpw Wallet Secure wallet storage Forget when wallet is closing.
koper Operator Anchored data encryption Forget when anchoring done.
skltW Wallet Long-term signature key Long-term.

Public keys

gf – Create secure channel Forget when wallet handshake done.
gw – Create secure channel Forget when wallet handshake done.
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3.3 Protocols description

In Carmentis, the wallet communicates with the front using the operator as a proxy.

HandshakeWFCreateRecord

WalletSignIn

WalletApproval

WalletAuthentication

Figure 3.1: Description of the executed sub-protocols during an execution.

Description of HandshakeWF sub-protocol

In a common scenario, the end-user performs an action on the front, which has to be approved
by the wallet. To approve the action, the wallet requires some information such as the data being
anchored in the blockchain. However, the wallet can only receive a limited amount of data (via
the QRCode displayed on the screen), vanishing any hope to transmit large data. To solve this
issue, a front/wallet “handshake” is executed to create a secure connection between the front
and the wallet, through the operator.

Initial knowledge of the parties Before the execution of the handshake, we assume that a
party may have initial knowledge that we describe below:

• The wallet W initially has access to the seed seed, its long-term private signature key skltW
(which is derived from seed) and a read-write access to its state stateW .

• The front F initially knows some data d. During the handshake, these data are exchanged
between all the parties (except the external observer and the node for which d must remains
unknown). It also have access to app which contains the application identifier appId and
the application version appVer. The front has also a read-write access to the state stateF .

• The back B initially knows some metadata meta, the application app as well as a read-write
access to its state stateB.

• The operator O initially has a read-write access to its state stateO.

Initially, we assume that the front F knows the data d composed of the triplet (dpub, d
wfo
priv, d

wf
priv)

where dpub are the public data, dwfopriv are the data, the identifier of the application appId as well
as the application version appVer. We assume that F owns an unique device identifier deviceId,
unique for a couple (website, device).

Description of the CreateRecord The record creation protocol is used to validate a set of
data and prepare the handshake between the front and the wallet via the operator.

CreateRecord⟨F(d),B(meta),O⟩ → F(recId),B(recId, d),O(recId, d, meta)
1. F → B : d

(a) Abort if d invalid.

2. B → O : PREPARE RECORD, (d, meta) % Label added to enhance clarity
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(a) Check that B is allowed to interact with O. % TODO
(b) recId←$ {0, 1}256
(c) store (recId, d)
(d) id← appId-recId

3. B ← O : (id, recId)

4. F ← B : (id, recId)

Description of the HandshakeWF We now describe the messages exchanged during the hand-
shake sub-protocol.

1. F → O : MSG SDK CONNECTION, device

(a) r ←$ {0, 1}256
(b) now← Current date time
(c) request← device∥now∥r
(d) requestId← H(request)
(e) qrId←$ {0, 1}256
(f) store (requestId, (now, "PENDING", request))
(g) store (qrId, (requestId, now))

2. F ← O : qrId

(a) (skkemf , pkkemf )← Ekem.KGen(1λ)
(b) qrData← (qrId, appId, gf )

% Wallet W starts the communication with the operator O based on the qrData obtained by
scanning the QRCode.

3. W ← F : qrData % (via QRCode scanning)

4. W → O : MSG GET CONNECTION INFO, qrId

(a) get (qrId, (requestId, ts))
(b) get (requestId, (ts, status, device∥now∥r))
(c) abort if status ̸= "PENDING"

5. W ← O : device∥now∥r
(a) id← H(device∥now∥r)
(b) Accept the connection.
(c) (ksess, ckem)← Ekem.Encaps(pkkemf )
(d) store (id, ksess)

6. W → O : MSG ACCEPT CONNECTION, (id, ckem)

(a) get (id, (ts, status, device∥now∥r))
(b) status← "CONNECTED"

7. F ← O : MSG WALLET CONNECTED, (id, ckem)

(a) ksess ← Ekem.Decaps(skkemf , ckem)
(b) store (id, ksess)

At the end of the wallet handshake sub-protocol, the wallet and the front have in common a shared
secret session key ksess obtained via the ephemeral Diffie-Hellman. This protocol is the cornerstone of
other sub-protocols, establishing a secure connection between the front and the wallet by the intermediate
of the operator.
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3.3.1 Description of the WalletApproval protocol

Description of WalletApproval This protocol is a wrapper protocol describing the execution of
the record creation, the handshake and the approvement of the record by the wallet. For clarity, let
denote d = (dpub, d

wfo
priv).

WalletApproval⟨W(seed),F(d),B(meta),O,N⟩ → W(d),F ,B(d),O(d)

1. W knows seed, F knows d, B knows meta = requestId, appId, channels, actors, accessRules,
approvalMsgId.

2. CreateRecord⟨F(d),B(meta),O⟩ → F(recId),B(recId),O(recId, d, meta)
3. HandshakeWF⟨W(seed),F(device),B,O⟩ → W(ksess),F(ksess)
4. F generates IV←$ {0, 1}128, F generates c← Eae.Enc(ksess, IV, (dpub, dwfopriv))

5. F → O : MSG REQUEST DATA, c

6. W ← O : MSG FORWARDED REQUEST DATA, c

(a) d← Eae.Dec(ksess, c)
% genesisId is undefined when it is the first interaction in the flow.
% genesisId is added by the back.

(b) (skW , vkW)← Esig.KGen(seed, nonce, appId, genesisId) % genesisId is obtained

7. W → O : MSG ANSWER SERVER, ("WALLET HANDSHAKE", recId, vkW)

(a) get (recId, d)
(b) get genesisId
(c) cck←$ {0, 1}256 % Generate channel key
(d) Update virtual blockchain

8. W ← O : MSG SERVER TO WALLET, ("BLOCK DATA", recId, appId, genesisId, d) % Confirm d

(a) Show the data and accept (or reject).

9. W → O : MSG ANSWER SERVER, ("CONFIRM RECORD", recId)

(a) Anchor the data (anchorRecord(recId)) via N to obtain res

10. W ← O : MSG SERVER TO WALLET, res

11. W → O : MSG ANSWER CLIENT, recId

12. F ← O : MSG FORWARDED ANSWER, recId

3.3.2 Description of the WalletSignIn sub-protocol

In this protocol, the wallet scans a code QR from the front, in order to sign-in using its long-term
signature key pair. The protocol is represented as follows:

WalletSignIn⟨W(seed, nonce),F(device),B(meta),O⟩ → F(sksigss , σ, pk
sig
w,ltk)

We now describe the protocol formally:

1. C generates (sksigss , pk
sig
ss )← Sig.KGen(1λ)

2. W knows seed, F knows d = pksigss , B knows meta = requestType, appId. F knows device.

3. CreateRecord⟨F(d),B(meta),O⟩ → F(recId),B(recId, d),O(d, meta)
4. HandshakeWF⟨W(seed),F(device),B,O⟩ → W(ksess),F(ksess)
5. F generates IV←$ {0, 1}128, F generates c← Eae.Enc(ksess, IV, pksigss )
6. F → O : MSG REQUEST DATA, c

7. W ← O : MSG FORWARDED REQUEST DATA, c
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(a) (pksigss )← Eae.Dec(ksess, c)
(b) (sksigw,ltk, pk

sig
w,ltk)← Esig.KGen(seed, nonce)

(c) σ ← Esig.Sign(sksigw,ltk, pk
sig
ss )

8. W → O : MSG ANSWER CLIENT, (σ, pksigw,ltk)

9. F ← O : MSG FORWARDED ANSWER, (σ, pksigw,ltk)

3.3.3 Description of the WalletAuthentication protocol

The authentication protocol is used when the user, through its wallet, wants to authenticate
himself to an application using its email address. More precisely, the email address is verified
by a so-called oracle1 holding a private signature key used to the sign the email address. In the
following, we denote the signature of the email by the oracle as σemail.

1. W knows seed, W knows σemail, F knows d = ϵ, B knows meta = requestType, appId. F
knows device.

2. CreateRecord⟨F(d),B(meta),O⟩ → F(recId),B(recId, d),O(d, meta)
3. HandshakeWF⟨W(seed),F(device),B,O⟩ → W(ksess),F(ksess)
4. F generates IV←$ {0, 1}128, F generates c← Eae.Enc(ksess, IV, d)
5. F → O : MSG REQUEST DATA, c

6. W ← O : MSG FORWARDED REQUEST DATA, c

(a) (pksigss )← Eae.Dec(ksess, c)
(b) ϵ← Esig.KGen(seed, nonce)

7. W → O : MSG ANSWER CLIENT, (σemail)

8. F ← O : MSG FORWARDED ANSWER, (σemail)

3.4 Security arguments

In this section, we provide informal arguments on the security of the presented protocol. We
stress that these arguments cannot substitute security proofs. We provide them to give
intuitions justifying the obtained security of the protocol.

Confidentiality of data on chain The data within a private channel should be kept private
from other parties outside of the channel. The secrecy of the data also holds at two conditions:
The first condition is that the channel key ck and the sub-section key ssk are not revealed at
any time by the user. The second condition is that the Merkle-trees should includes randoms
to obtain a randomised hash. Under these two conditions, the confidentiality of the data in a
private channel is believed to hold.

Anonymity of users The anonymity of the wallet owned by a user is not preserved at every
step since the long-term public key of the wallet is used, for instance, for authentication. However,
during the approval, the wallet do not rely on its public key but on a dedicated virtual blockchain-
focused signature key pair, one key pair for one virtual blockchain. Within the same virtual
blockchain, the used signature key pair is the same, meaning that only weak anonymity can be
ensured, in the sense of a pseudonym (the freshly generated key pair) is used instead of the
long-term public key. However, it is believed that two approvals performed by the same wallet

1This kind of oracles should not be confused with oracles given to the adversary in security experiments.
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over two distinct virtual blockchains cannot be linked as coming from the same wallet. The
reason is that the two key pairs are derived from a key derivation function whose the output is
indistinguishable from randomly generated key pair. The anonymity holds under the fact that
these two keys are not tied with an identity.

Proof unforgeability The core of the protocol is to provide a proof of integrity using Merkle-
trees. The proof is required to be unforgeable, meaning that no one can create a proof of integrity
for other data not anchored in the virtual blockchain. This unforgeability only holds under the
unforgeability of the Merkle-tree, which intuitively holds under the collision-resistance property
of the underlying cryptographic hash function.
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Chapter 4

Security model & analysis

The introduced protocol involves a several parties having a different level of trust. In this section,
we introduce the parties involved in the protocol and the targeted level of security.

• Organisation: The organisation corresponds to the entity running the back (of the web
server) and the operator. Note that the front of the web server is served by the back server
but is assumed to not collude with the organisation, which explains why the front is located
at the user and not the organisation.

– Back(B): The back server has a limited role in the security of the protocol. Indeed,
in the protocol, the back server do not hold any key and is limited to provide the web
page to the end-user.

– Operator(O): The operator acts in the protocol as a counter-signer, attesting the
(partial) correctness of the result sent by the user. By partial correctness, we mean
that the verification is essentially structural (for instance, does every field has been
provided?) rather than a complete verification.

• User: The user holds the data being anchored in the blockchain and initiates a transaction.

– Front(F): The front corresponds to the web page sent by the back server. It is here
that the user puts its data.

OrganisationUser

Wallet Front Back Operator Node

Figure 4.1: Graphical representation of the communication channel between the parties. Two
parties linked with a full edge means that both parties are allowed to communicate between
each other. Otherwise, no communication is assumed between these parties. The dashed edge
between the wallet and the front means that the wallet can obtain information from the front
(via QRCode) but the converse is not true.
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– Wallet(W): The wallet is owned by the user. The wallet holds a secret-seed from
which all (signature) key pairs are derived. In our security model, we assume that the
front can provide some information to the wallet via the usage of QRCode, as shown
in Figure 4.1.

• Node (N ): The node plays a crucial role in the blockchain. It maintains the state of
the ledger and, if configured appropriately, can participate to the validation process of the
blocks to be added in the blockchain.

4.1 Security model

The security model is the intersection of a protocol definition, a security property and an adver-
sary.

4.1.1 Protocol definition

• HandshakeWF⟨W,F ,B,O⟩ → W(k),F(k) The inputs of the protocol for the parties are
listed below:

– The wallet W starts the protocol with its seed seed, its long term signature key skltW
and its state stateW .

The wallet ends the handshake protocol with a secret session key k shared with the
front F . It also outputs a state stateW containing its (possibly updated) internal
state.

– The front F starts the handshake protocol with some data d, the application app =
(appId, appVer) where appId is the application identifier and appVer is the application
version. It is also inputted with a device parameter device = (deviceId, ip, ua) as
well as its state stateF .

At the end of the protocol, F outputs the session key ksess as well as its possibly
updated state stateF .

– The back B starts the handshake protocol with some metadata meta, the application
app = (appId, appVer) and its state stateB.

At the end of the protocol, B outputs the data d, the metadata meta as well as its
possibly updated state stateB.

– The operator O starts the handshake protocol with its internal state stateO.

At the end of the handshake, O outputs its possibly updated state stateO.

• Approve⟨W(seed, k),F(k, dpub, dwfopriv),B,O,N⟩: The protocol ends with the following out-
puts from the parties:

– The walletW ends the protocol with the data being inputted by the user in the front,
namely dpub and dwfopriv. It also terminates with a proof key kπ used later to prove the
authenticity of some data.

– The operator O ends the protocol with the public data dpub as well as the private
data dwfopriv. It also obtains a commitment cm for the anchored data d (not only on the
public data) but also an agreement σW from the wallet.

– The node N acting as a bulletin board, obtains all data being anchored in the
blockchain, which includes the commitment cm, the public data dpub.
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• GenProof(kπ,D) → π: Given the proof key kπ and a subset D of the data d (containing
the public and private data), this algorithm outputs a proof π.

• CheckProof(D, cm, π)→ b: Given the subset D of data d (containing the public and private
data), the commitment cm and the proof π, it outputs 1 if the proof is valid, 0 otherwise.

4.1.2 Considered adversaries

Our security definition can be observed under the prism of different adversaries, each one mod-
elling a different attack and corruption scenario. For a better understanding of the security,
we provide three adversaries having an incremental capabilities. We describe these adversaries,
whose the capabilities are sum-up in Table 4.1.

Abilities Proof Method
Name MS MI MB CR CM FV
External observer
External attacker
System intruder

Table 4.1: Description of the considered adversaries. MS, for “Message Sniffing”, allows the
adversary to read exchanged messages. MI, for “Message Injection”, allows the adversary to
inject a message at any moment in the protocol and to any party. MB, for “Message Blocking”,
allows the adversary to block a message transiting from a party to another. CR, for “Corruption”,
allows the adversary to corrupt an honest party (before the setup). CM, for “Computational
Model”, corresponds to a proof in the computational model. FV, for “Formal Verification”,
corresponds to a proof using automated verification. Note: The proofs are currently in progress.

External observer The first adversary we consider is called external observer. As its name
suggests, this adversary is passive in the sense that he is limited to observe the communication
between the parties and nothing else. Hence, no interaction is allowed with any of the existing
parties and is only able to read data being published. While this adversary is not useful and
hence do not model well a real attacker, the protocol should be considered secure against this
passive adversary, otherwise, no security can be proven against stronger adversaries.

External attacker The second adversary we consider is called external attacker. This time,
the adversary is allowed to interact with any party accepting outside messages. It is also able to
block any communication between two parties, but also modify a transiting message when it is
possible.

System intruder The third and last adversary, called system intruder, obtains all the capa-
bilities of the two previous adversaries, but is also able to corrupt a party inside the protocol.

Communication model During the protocol execution, we assume that a message exchanged
between two parties A and B is done via secure and authenticated channel. In particular, we
assume that replay-attacks are prevented using these channels. Note that only one-sided authen-
ticated channel is sufficient for our need. In contrast, we allow an external adversary to initiate
a message with any party of its choice. We elaborate more on this aspect below.
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4.2 Security properties

In this section, we introduce the security properties guaranteed by the Carmentis protocol. For
clarity, we first introduce them informally.

Proof unforgeability The main goal of Carmentis is to provide a mechanism to prove the
authenticity of the data being anchored in the blockchain. This can can expressed as follows:
Suppose two users u1 and u2 and some l-sized data d = d1, . . . , dl owned by u1. The user u1

wants to prove the authenticity of a subset of d, denoted D = {di|i ∈ I}, to u2. To help u1 to
prove the authenticity of D, we allow him to compute some commitment cm on which all users
will agree on, for instance using the blockchain. A trivial solution for this would be to anchor
all the data in the blockchain, which might be not suitable for large data. Rather, we restrict
the size of cm to be sub-linear (even better, independent) on the size of the data d.

When the user u1 wants to prove the authenticity of D with respect to the commitment cm,
u1 will compute a proof π whose the size is restricted to be sub-linear in d (otherwise, it suffices to
reveal d in its entirety). Denote the proof validation algorithm as CheckProof(cm,D, π)→ b. The
unforgeability property ensures that it should be infeasible to compute a proof π′ with respect to
some data D′ for some indexes I (different of D for at least one index i ∈ I, or in other words,
di ̸= d′i) such that CheckProof(cm,D′, π′)→ 1.

Data confidentiality The confidentiality of the data is expected to reach one of the three
following levels:

• The first level called public is used when the data can be made public. For this level, no
confidentiality is required.

• The second level called system private is used when the data cannot be made public. At
this level, any exterior adversary should not be able to learn the data. At this level, every
entity acting in the system managed either by the user or the organisation are allowed to
observe the data.

• The third and last level called user private is used when the data cannot be made public
and should not be visible by the organisation. In other words, only the user (which includes
the wallet and the front) should be able to learn the data.

Wallet anonymity A wallet in the cryptocurrency systems is mainly designed to manage a
secret signature key used for approving an action like a sign-in or a transaction, by creating a
so-called signature. The public signature key, known by everyone as suggested in its name, is used
to verify a signature computed over the signed object. An interesting property for an end-user
having a wallet is to consider a notion of anonymity. More formally, it should be infeasible to
distinguish between two users u1 and u2 (each one having its own wallet) interacting publicly
with its wallet.
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Chapter 5

Presentation of use-cases

In this chapter, we introduce two applications of our protocol called respectively Sign and Access.

5.1 Sign application

In this application, two users A and B want to sign a file f using their wallet. Before to sign
the file, each user must provide a proof of identity provided by an oracle. The signature of the
file is performed only after the validation of the identity with respect to the proof of identity
provided by the oracle. For clarity, we divide our explanation into four steps: First, we present
the initial setup including the parties and the existing virtual blockchains. Second, we introduce
the procedure in which the back server anchors the file f that should be signed by A and B.
One can think about f as a contract which is first written and approved by a lawyer before to
be signed by the users. Third, we introduce the procedure in which a user obtains a proof of
identity. Fourth, we explain the procedure in which the file is signed.

Oracle Operator Or Back B Application Operator O

Wallet WA Wallet WBFront FA Front FB

Figure 5.1: Graphical representation of parties in the sign use-case.

5.1.1 Initial setup

We start the initial setup description by introducing the parties. As a central piece of the protocol
is located the back server B providing the file f to be signed. Together with the back server
B is located the application operator O. Note that for clarity we mention O as an application
operator instead of simply operator to avoid confusion. Indeed, in the protocol, the oracle is
composed of two parts: The oracle operator receiving request, acting as a proxy for the second
part of the oracle being the oracle backend. For simplicity, we will only consider the oracle
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operator denoted Or. The protocol also includes two wallets WA and WB and two fronts FA

and FB , one for each user A and B.
Before to explain the active steps of the protocol, it remains to explain the assumed initial

structure of the virtual blockchains. First, we assume that each organisation (one to manage the
oracle and another one to manage the back and application operator) have setup an organisation
virtual blockchain. In addition, the organisation managing the back and application operator is
assumed to have declare an appliaction definition in a new application virtual blockchain (see
Section 1.3.3). Similarly, the organisation managing the oracle is required to have an oracle
virtual blockchain (see Section 1.3.4) declaring the oracle definition.

5.1.2 File anchoring

The file anchoring procedure starts with back server assumed to hold (or receive) the file f .
The back sends an anchoring request to the application operator O, which then creates a new
application-ledger virtual blockchain (see Section 1.3.8). This new (public) application-ledge
virtual blockchain is initiated with a single micro-block containing the file f and the two identities
A and B, corresponding to the set of allowed signers.

5.1.3 Authentication

In the second step, the user authenticates to the back server with a proof of identity provided
by the oracle. This proof of identity is anchored in the blockchain.

The authentication process starts with a request access from FA to the back for the file f ,
providing its public key pkA. The back B asks the application operator O to allow A (identified
by its public key pkA) to the file f . The request consisting on pkA is transferred from O to the
oracle Or which then starts an authentication process with A. Once the authentication process
is completed, the oracle Or reponds with three elements: An identity IA, a signature σA, and a
merkle root hash rtA. Once these three elements are sent by the oracle to the application operator
O, it anchors in a new application-user virtual blockchain (see Section 1.3.7) whose the first micro-
block contains these three elements. Note that the application-user virtual blockchain has a larger
scope that application-ledger virtual blockchain, since it is independent of the instances of the
application. To use this proof of identity anchored in the application-user virtual blockchain in
the current instance of the application, a new reference block is added to the application-ledger
virtual blockchain, referencing the (public) micro-block containing the proof of identity in the
application-user virtual blockchain.

5.1.4 File signature

Once the user has been authenticated, the user A asks via the front FA to the back B to sign
the file f . A request is sent to the wallet WA to sign the file f , returning the signature σA,f to
the operator O. This signature is then stored in the application-ledger virtual blockchain in a
dedicated micro-block.

5.2 Access application

The access application allows a user to prove its majority to access an adult service, without
revealing any information about the identity of the user accessing the service.
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Overall protocol description We describe the protocol in which four parties are invovled:
The proof of majority oracle O1, the user U , the adult service B and a second oracle O2.

1. The first interaction is initiated by the user U to the adult service B, sending an “hello”
message.

2. The adult service responds with a random challenge s to the user.

3. The user asks the first oracle O1 in order to obtain a proof of identity.

4. The first oracle O1 responds with a proof of identity composed of two parts: A signature
σU of a hash root rtU , corresponding to the couple (σU , rtU ).

5. The user sends the couple (σU , rtU ) and the challenge s is sent to the second oracle O2.

6. The second oracle O2 responds with a signature σs of s.

7. The signature σs is sent back to the adult service which verifies the signature σs using the
public key of the second oracle O2.
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